

MEMBRAN SEL

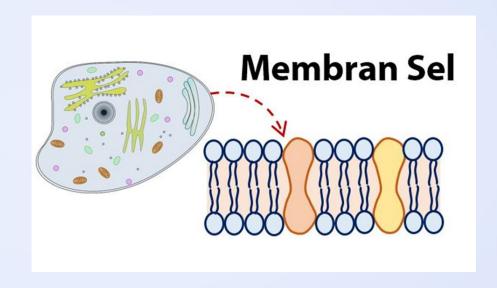
Struktur Membran Sel dengan Mikroskop Elektron

- Semua sel mempunyai membrane sel
- Membran sel penting untuk kehidupan sel

Fungsi

- Mengontrol apa yang masuk dan keluar ke sel untuk mempertahankan keseimbangan sel disebut homeostasis
- Membungkus sel dan membatasi sel melindungi sel dari lingkungan sehingga memelihara perbedaan esential antara sitoplasma dan lingkungan ekstraseluler
- Membungkus organel-organel sel, spt retikulum endoplasma, badan Golgi, mitokondria, dll; memelihara perbedaan karakteristiknya dengan sitoplasma

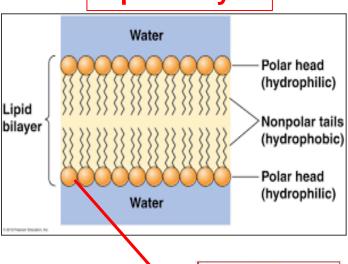
Fungsi

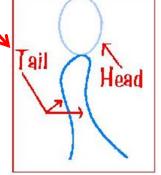

- Komponennya dapat bertindak sebagai:
 - Penghasil ATP, yang digunakan untuk transport molekul-molekul melewatinya
 - Penghasil dan penghantar sinyal elektris pada sel saraf
 - · Reseptor atau protein penerima sensor sinyal ekstraseluler

Sifat Membran Sel

- Selektif permeabel, yang hanya dilewati oleh beberapa zat saja.
- Adanya transport melalui membran karena adanya gerakan – gerakan yang terjadi pada selaput organel dalam sel.

Struktur Membran Sel

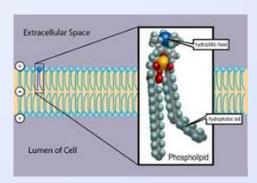



Struktur umum membrane sel terdiri dari:

- · Lipid Bilayer (2 lapis fosfolipid):
 - Kepala -Phosphate bersifat polar (suka air –hidrofilik)
 - Ekor Asam lemakifat non-polar (tidak suka air –hidropobik)
- · Protein membran

STRUKTUR MEMBRAN SEL Luar Sel Carbohydrate chains Protein Lipid Bilayer Transport Phospholipid Protein

Lipid Bilayer



Struktur Membran Sel

Lapisan lemak (Lipid bilayer)

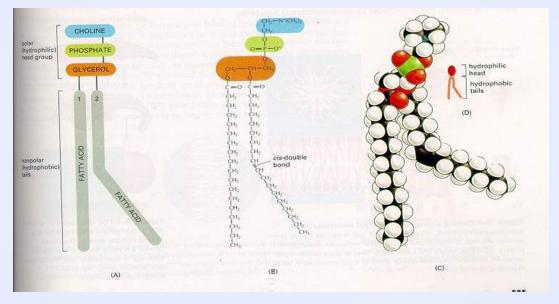
- Struktur dasar dan universal dari membran sel.
- Bersifat amphipatik/amphifilik, mempunyai bagian yang:
 - Hidrofilik ("suka air") atau polar
 - · Hidrofobik ("takut air") atau nonpolar
- · Jenis lemak yang paling banyak: fosfolipid

Struktur Membran Sel

4 jenis fosfolipid yang dominan pada membran plasma:

- 1. Fosfatidilkolin
- 2. Fosfatidilethanolamin
- 3. Fosfatidilserin
- 4. Spingomielin
- 5. + inositol fosfolipid, dalam jumlah kecil, tapi memegang peranan penting dalam proses penghantaran sinyal pada komunikasi antar sel

TABLE 10-1 Approximate Lipid Compositions of Different Cell Membranes


LIPID	PERCENTAGE OF TOTAL LIPID BY WEIGHT					
	LIVER CELL PLASMA MEMBRANE	RED BLOOD CELL PLASMA MEMBRANE	MYELIN	MITOCHONDRION (INNER AND OUTER MEMBRANES)	ENDOPLASMIC RETICULUM	E. COLI BACTERIUM
Cholesterol	17	23	22	3	6	0
Phosphatidylethanolamin	e 7	18	15	25	17	70
Phosphatidylserine	4	7	9	2	5	trace
Phosphatidylcholine	24	17	10	39	40	0
Sphingomyelin	19	18	8	0	5	0
Glycolipids	7	. 3	28	trace	trace	0
Others	22	13	8	21	27	30

Komposis lipid pada variasi membran sel

Bagian dan Komposisisi dari Molekul Fosfolipid (Fosfatidilkolin)

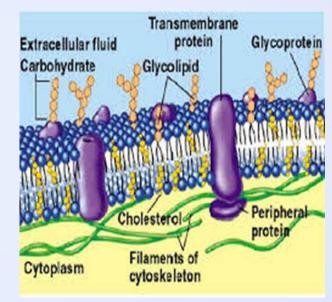
Perbedaan pada panjang dan tingkat saturasi dari bagian ekor (hydrokarbon) molekul fosfolipid mempengaruhi fluiditas dari suatu membran

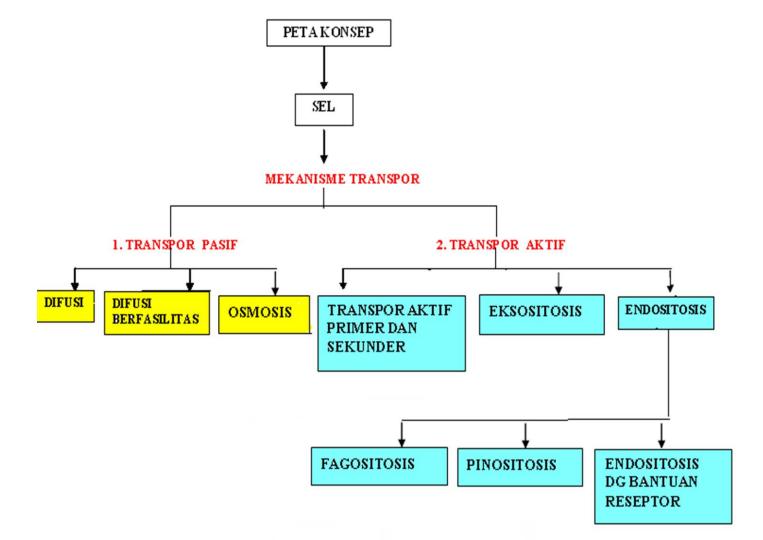
Komponen Lain dalam Lapisan Lemak ("Lipid Bilayer")

1. Kolesterol

- Memperbesar batas permeabilitas dari "lipid bilayer"
- Mengurangi fluiditas dari membran sel
- Mencegah rantai hidrokarbon berikatan satu sama lain dan berkristalisasi

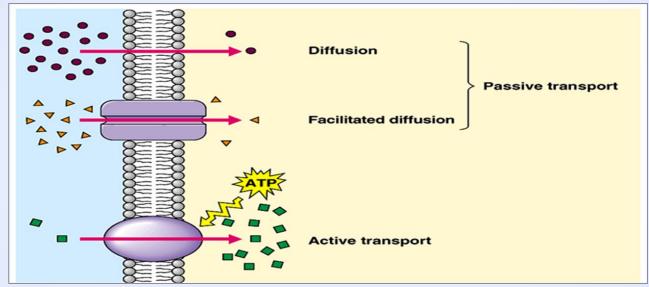
2. Glikolipid


- Penambahan gugus gula pada molekul lipid | berperan penting dalam interaksi sel dengan lingkungannya, seperti :
- Melindungi membran terhadap adanya kondisi ekstrem (misalnya: pH yang rendah dan enzim degradatif)
- Merubah konsentrasi ion (terutama Ca2+ pada plasma membran)
- Proses pengenalan sel, yaitu adhesi antar sel


Protein Membran

- Bertanggung jawab terhadap banyak fungsi membran seperti sebagai reseptor, enzim, atau protein transport, dll.
- 2. Jumlah dan tipe dari protein pada plasma membran sangat bervariasi.
- 3. Misalnya, pada membran mielin pada bagian axon dari sel saraf → kurang dari 25 % dari masa membran adalah protein.
- 4. Contoh lain → Pada membran yang terlibat dalam pembentukan ATP (yaitu membran bagian dalam mitokondria atau kloroplast) mengandung 70 % protein

Sistem Transpor pada Membran

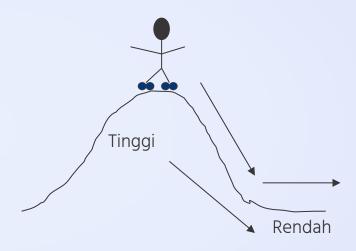

Transport molekul dari dan ke dalam sel melalui membran bertujuan untuk:

- 1. Memasukkan komponen nutrien yang penting untuk metabolisme sel
- 2. Membuang produk limbah metabolisme sel
- 3. Mengatur konsentrasi ion intraseluler

Protein membran memegang peranan penting dalam transport molekul pada sel 15 – 30 % protein pada sel adalah protein transport

Transpor Pasif & Aktif

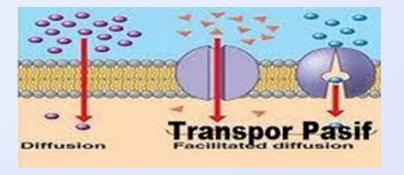
- Transpor pasif: zat berdifusi menuruni gradien konsentrasi.
- Transpor aktif: melawan gradien konsentrasi. Energi: ATP



Transpor Pasif

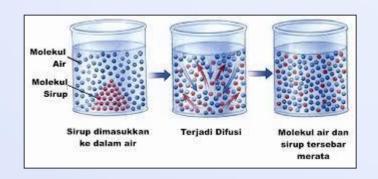
Sel Tidak Menggunakan Energi

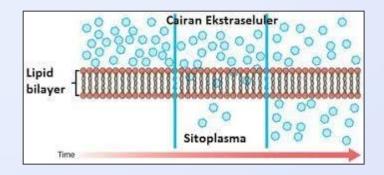
- 1. Difusi
- 2. Difusi Berfasilitas
- 3. Osmosis



Transpor Pasif

- 1. Bersifat spontan dan tidak menggunakan energi
- 2. Tidak melewati selaput membran semipermeable
- 3. Molekul bergerak secara acak
- 4. Molekul menyebar dari daerah konsentrasi tinggi ke daerah yang berkonsentrasi rendah



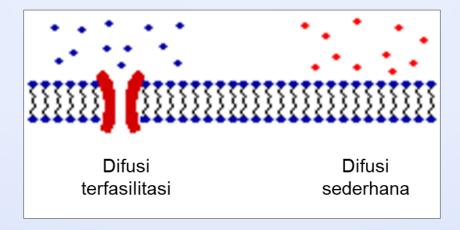


Transpor Pasif: Difusi

- Difusi: peristiwa mengalirnya atau berpindahnya suatu zat dalam pelarut dari bagian berkonsentrasi tinggi ke bagian berkonsentrasi rendah.
- Difusi bergantung pada perbedaan konsentrasi dan tekanan hidrostatik.

Transpor Pasif: Difusi

Mekanisme:


- 1. Energi untuk proses difusi adalah energi kinetik yang normal ditimbulkan akibat pergerakan suatu bahan.
- 2. Membran bersifat larut dlm lemak/lipid → menembus lipid bilayer
- 3. Membran sel permeabel terhadap molekul larut lemak seperti hormon steroid, vitamin A, D, E, dan K serta bahan-bahan organik yang larut dalam lemak
- 4. Membran sel juga sangat permeabel terhadap molekul anorganik seperti O,CO2, HO, dan H2O.

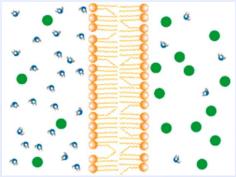
Transpor Pasif: Difusi yand Difasilitasi

- 1. Difusi yg difasilitasi: difusi partikel khusus melalui transpor protein yang ada pada membran
- 2. Transport Protein adalah spesifik (memilih hanya molekul tertentu untuk melewati membran)
- 3. Mentransport molekul yang lebih besar atau bermuatan (ion)

Transpor Pasif: Difusi yand Difasilitasi

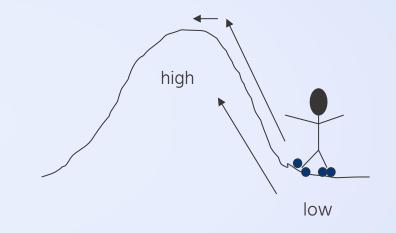
Mekanisme:

- 1. Zat yg dapat melalui membran plasma yg melibatkan protein pembawa/protein transporter.
- 2. Seperti: asam amino, glukosa dan bbrp garam mineral
- 3. Protein pembawa utk glukosa banyak ditemukan pd: sel-sel rangka, otot jantung, sel-sel lemak dan sel-sel hati, karena sel sel tsbt selalu membutuhkan glukosa untuk diubah menjadi energi



Transpor Pasif: Osmosis

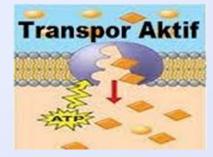
- 1. Difusi air melalui membran selektif permiabel
- 2. Air bergerak dari konsentrasi tinggi ke konsentrasi rendah
- 3. Air bebas berpindah melalui pori-pori
- 4. Solut (hijau) terlalu besar untuk melewati membran.



Transpor Aktif

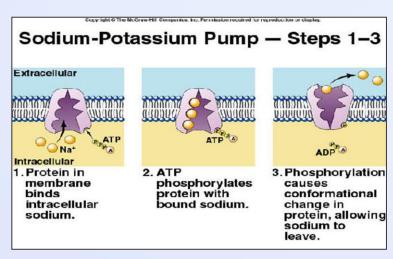
Menggunakan energi

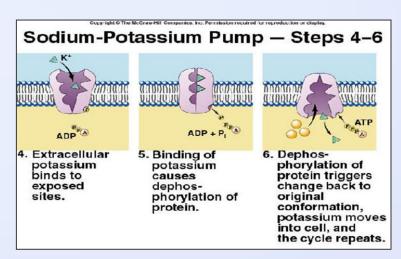
- 1. Pompa protein
- 2. Endositosis
- 3. Eksositosis



Transpor Aktif

- 1. Sel menggunakan energi
- 2. Transpor partikel-partikel melalui membran semipermeabel yang bergerak melawan gradien konsentrasi yang memerlukan energi dalam bentuk ATP
- 3. Perpindahan dari daerah konsentrasi rendah ke daerah berkonsetrasi tinggi





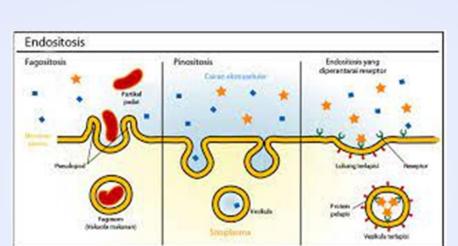
Transpor Aktif: Pompa Protein

- 1. Transport protein yang memerlukan energi untuk dapat berlangsung
- 2. Example: Pompa Sodium / Potassium penting untuk respon saraf.

Transpor Aktif: Pompa Protein

Mekanisme Kerja Pompa Protein Na-K

- 1. Na+ pada sitoplasma berikatan dengan pompa Natrium-Kalium. Afinitas terhadap Na+ tinggi saat protein berbentuk seperti ini.
- 2. Pengikatan Na+ merangsang fosforilasi (penambahan gugus fosfat) protein oleh ATP.
- 3. Fosforilasi menyebabkan protein berubah bentuk, sehingga afinitasnya terhadap Na+ menurun, dan dilepaskan ke sebelah luar.
- 4. Bentuk baru protein memiliki afinitas tinggi terhadap K+, yang berikatan ke sisi ekstraselualer, dan memicu pelepasan gugus pospat.
- 5. Hilangnya fosfat mengembalikan bentuk awal protein, yang memiliki afinitas lebih rendah terhadap K+
- 6. K+ dilepaskan, afinitas terhadap Na+ tinggi lagi, dan siklus ini berulang.


Transpor Aktif: Endositosis

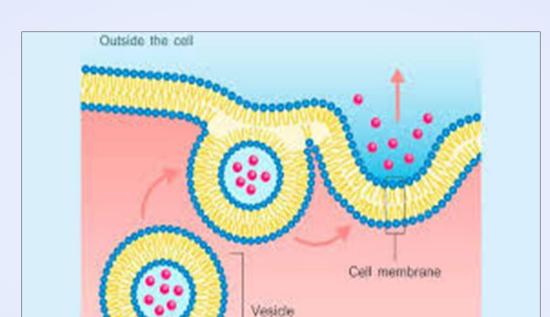
- 1. Mengambil material besar ke dalam sel
- 2. Menggunakan energi
- 3. Membran sel melipat mengelilingi partkel makanan "cell eating"
- 4. Membentuk vakuola makanan dan mencerna makanan
- 5. Demikian cara sel darah putih memakan bakteri

Transpor Aktif: Endositosis

- 1. Fagositosis: peristiwa terjadi pada saat sel menelan partikel padat
- 2. Pinositosis: merupakan peristiwa masuknya sejumlah kecil medium kultur dengan membentuk lekukan lekukan membran sel
- 3. Endositosis yang diperantai reseptor: terjadi ketika fluida ekstraseluler yang terikat pada reseptor spesifik yang berkumpul pada lubang yang dilapisi protein pada membran plasma.

Transpor Aktif: Eksositosis

- 1. Memaksa material keluar dari sel
- 2. Membran menyelimuti material
- 3. Sel merubah bentuk memerlukan energi
- 4. Contoh: Hormon atau limbah dikeluarkan dari sel


Transpor Aktif: Eksositosis

- 1. Kebalikan dari endositosis
- 2. Proses di mana sel mengeluarkan molekul dan benda benda lainnya yang terlalu besar untuk melewati struktur membran sel.
- 3. Contoh pada neuron atau sel saraf, di mana terjadi pelepasan sinyal kimiawi yang merangsang sel otot.

Transpor Aktif: Eksositosis

Cytoplasm

THANKS

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

